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GROWTH OF A MAIN CRACK UNDER THE INFLUENCE OF GAS 

MOVING INSIDE IT 

Yu. N. Gordeev and N. A. Kudryashov UDC 622.011;622.023 

The motion of a gas or liquid in a growing main crack is examined in connection 
with the problem of the hydraulic fracture of an oil-bearing bed [i, 2] and evalua- 
tion of the quantity of gaseous products escaping from the cavity formed by the 
underground explosion into the atmosphere by way of the crack [3]. The studies 
[1,.2] formulated and solved a problem on the quasisteady propagation of an axi- 
symmetric crack in rock under the influence of an incompressible fluid pumped 
into the crack. An exact solution was obtained in [4] to the problem of the 
hydraulic fracture of an oil-bearing bed with a constant pressure along the 
crack. The Biot consolidation theory was used as the basis in [5] for an examina- 
tion of the growth of a disk-shaped crack associated with hydraulic fracture of a 
porous bed saturated with fluid. A numerical solution to a similarity problem on 
the motion of a compressible gas in a plane crack was obtained in [6]. Here we 
examine the problem of the propagation of a main crack (plane and axisymmetric) 
under the influence of a gasmoving away from an underground cavity. 

i. Formulation of the Problem. The motion of an isothermal gas in a main crack is 
described by the system of equations [6] 

~ p + i2~w-~u = O, p = c2p,. 

(i.l) 

where p is density; u is velocity; p is the gas pressure; c is the isothermal sonic velocity; 
is the gas velocity; n is a geometrical parameter (n = 0 for planar symmetry and n = i for 

axial symmetry); w is the opening of the crack; r is a coordinate; t is time. 

Since the velocity of the crack under the influence of the gas moving inside it is much 
lower than the velocity of Rayleigh waves, then the opening of the crack is connected with 
the rock pressure and the gas pressure by the expression [7] 

i e 

w (r, t) = ~ L ( t) ! fg(O [ P (~' t) -- P~] ~ v O~-- ~ " ( 1 . 2 )  

Here ,  g = r / L ( t ) ;  L ( t )  i s  t h e  l e n g t h  o f  t h e  c r a c k  a t  t h e  moment o f  t ime  t ;  g ( t )  = r 0 / L ( t ) ;  
r 0 i s  t h e  r a d i u s  o f  t h e  u n d e r g r o u n d  c a v i t y ;  p? i s  t h e  r o c k  p r e s s u r e ;  o i s  t h e  P o i s s o n ' s  
ratio; G is the shear modulus. 

System (1.1)-(1.2) is closed by the condition of finiteness of the stresses on the 
contour of the crack [4], which determines the length (radius) of the crack: 
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1 
ff [~ (% t) - Pd n'~dn _ 

(1.3) 

It was shown in [8] that the effect of adhesive forces in the rocks can be ignored: 
K/r ~ O, L0 = e(t = 0) .  

The i n i t i a l  and boundary c o n d i t i o n s  fo r  sys tem ( 1 . 1 ) - ( 1 . 3 ) :  

p(r ,  t = O) = Pl ,  w ( r , : t  = O) = w i ( ~  (1 .4 )  
p ( r = ~ ,  t) =p~(t),  q < ~ r < ~ L ( t ) .  

We introduce dimensionless variables and parameters by means of the formulas 

t=l (t) = L (t) Lo~, ' L o = L (t = 0)~ ~ = r L - ! ( t ) ~  

p' (L t) = p (r,. -~ t) po ,: Po = P~ (t = O)~ t'  = t t ~  

(1.5) 

[w' o ~ PoLo 

WO ~ L  0 E . ,W.I~ ' ln(2V'eN/z) '  N =p0/p~ 
k 

t 

W(~, t) =//2(r, t) wol/~ - l( t ) ,  U(~,,t) = u ( r ,  t) uoli~ - l( t) .  

We will henceforth omit the primes, supposing that p = p' and t = t'. In dimensionless 
variables (1.5) system (1.1)-(1.3) and initial and boundary conditions (1.4), (1.5) have 
the form 

a +u_~_ =0; ~ P  w ~ 
1 8 

2N y ~ [p (~], t ) -  N -I] 1]nd~l-ndO . 
w (~, t) = ~ I~ ( 2 ~  N/,,) ~ ~( , )  1,%~_---C7 Vr ' 

1 
' [ p  (% t) - N-q ,f'd~ 0; 

p(~,  t =- O) = PdPo,  W(~, t = O) = wl(~Lo)/wo, 

p(~ = g(t), t) = p.2(t)/po, g(t) <. ~ <~ I. 

( i . 6 )  

(1.7) 

(i.s) 

( i . 9 )  

We represent the double integral (1.7) as 
I 

w (~, t) = 2N [ dOqn (~, 0)[p (% t) --  N-1L 
n 1~ (2]/7 n/a) ;,) (i.io) 

where 

With n = 0, Q0(~, 

1 
Q n ( L o ) = o  n I hi-nan - {L ~ > o, 

x(L o) = o, ~ < o .  

8) is expressed through elementary functions: 

(lill) 

Qo (~, o) = In V V C r  + V , L  p 
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With n = i, Qz(5, O) is an elliptical integral of the first type: 

Qx (~, o ) -  0x -~ (~, 0) F [arcsin ~ l - ~ )  ~ { t  _ ~z],/z ( ~ ) , ] ,  

s = s ign (~ - -  0). 

2. Method of Solution. We will use the decomposition method [9] to numerically solve 
problem (1.6)-(1.9). We introduce the following difference grid into the region being 
examined t~ [0, =), $ ~[0, i] 

r = o)~Xt~a = {(~a, t"),  ~h+x = ~a + h, ~h+ 1/,~ = (~h+l + 

+ ~ ) / 2 , ,  t " + l - t ' + ~ ;  k = t  . . . .  , M ;  m =  1, 2 . . . .  }. 

System ( 1 . 6 ) - ( 1 . 8 ) ,  
i n t o  t h r e e  f r a c t i o n a l  t ime s t e p s ,  has the  form 

a t  t m < t < t m + ~/3 

l O  t #  
- f  ~ - W  = O, . ~" b'i" R = G 

decomposed at the differential level in terms of physical processes 

0; 

(2 .1 )  

a t  t" + vl3 ~ t < .  t"  + 2T/3 

a t  t ra + 2~13 .~< t < t =,+t 

t 0 w = w[pk R = R[p],: ~- ~(RWp)  -- 0 ;  ( 2 . 2 )  

t 0 W = 0 , :  t o t 0 k ~ ( 2 . 3 )  To-F -~FR-=O,; y ~ p - - - f i W r  ( W p ) = 0 .  

System ( 2 . 1 )  d e s c r i b e  t h e  motion of  t he  gas in a s t a t i o n a r y  c rack .  The f i r s t  and 
second r e l a t i o n s  in ( 2 . 2 )  c o i n c i d e  wi th  Eqs. ( 1 .7 )  and ( 1 . 8 ) ,  _ r e soec t i ve ly .  We f i n d  from 
th e  t h i r d  e q u a t i o n  of  ( 2 . 2 )  t h a t  pRW = D(~) f o r  t ~  [t m +z/31 t m + 2v/3) (D(g) i s  a f u n c t i o n  
of  g) .  System ( 2 . 2 )  d e s c r i b e s  t he  p r o p a g a t i o n  of  a c rack  and the  change in gas p r e s s u r e  
in r e l a t i o n  to  the  de fo rma t ion  of  the  c rack .  Equa t ions  ( 2 . 3 )  a re  connec ted  wi th  the  
change from a Eulerian coordinate system (r, t) to a moving system (~, t). 

We introduce the grid functions Pk' W~k' Rm corresponding to the functions p, W, and R 

m at the node ($k, tm) and Pk+i/2' W~k+I/2 at the node ($k+x/2, tm). We approximate the values 

of these functions at half-integral nodes by means of the formula ~ 0~5(A~+u2+ 

Using the integro-interpolational method in [i0], we obtain the following implicit 
difference scheme for three fractional steps from Eqs. (2.1)-(2.3) 

i )  t" ~< t < t" + ~/3 

pm+t/ah pink I 

k k 

2) t" + x / 3  ~< t <  t m + 2~/3 

w r  +'/" = R " + ' / "  = R 

p'~ + 21SW~ + 21s Rm # ~/a = p~ § llSw~a + I/a Tlra +11a ; 

3) t m + 2TI3 ~< t < t ;"+~ 

W~ "+1 = W "+~/3k ,. R ~ + I  = / / .+2/s, .  

/~+1__/~+2/n ~h ( R " + ' - ' R ~  ) Ak {Wp}m+l 
't" R m + ] w ~ + I  \ T . 

W ~  +x/3 = W L  R :  +1/3 R m 

f~,,WS_ A ,~,~+x/3 A k  ].~ it/ k.alttj  ~--- 0 ;  

~-' 0 .  

( 2 . 4 )  

( 2 . 5 )  
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Here, A~+P/3(p = I, 2, 3) is a grid function obtained as a result of satisfaction of the 

p-th fractional step; Ak{A}m = (A~+ l -A~)/h. 

The integrals (1.7), (1.8) were calculated from the trapezoid formula. Here, the pro- 
file of the crack was determined from the expression 

M--I 

~V~= :~ln(2~eN/xt' ~ h(On)hd+l12[Pi%llz--J':"l]': (2.6) 

where s < k < M and s = [g(t)/h] (171 is the integral part of z). The index s characterizes 
the coordina[e of the boundary of the cavity $s on the grid ~ from which the crack emerges 
at the moment of time t. The coordinate $s changes with the growth of the crack. Here, 
the crack remains stationary relative to the coordinate system ($, t). 

The kernel Qn does not depend on time, and the matrix (Qn)kj (size M • M, where M is 
the number of nodes in the grid) is calculated from Eq. (i. Ii) only once. The length 
of the crack in the m + 1-st time layer is determined from condition (1.8) 

~m+l 

The p a r a m e t e r  ~m+l i s  f o u n d  by i t e r a t i o n  f rom ( 2 . 6 ) .  We t h e n  d e t e r m i n e  t h e  c r a c k  l e n g t h  
R m+z = ~m+zRm i n  t h e  m + 1 - s t  t i m e  l a y e r .  

The mass b a l a n c e  was c h e c k e d  i n  t h e  n u m e r i c a l  s o l u t i o n  

1 1 
io(t)=2n+agn-~G-l(t--'v)Ln+~(t) ~ ~ X 

g(t) g(t) 
X d~dn~nn"qn(~, n) P (~, t) [p Ol,. t ) .  N -z] 

(M0(t) is the mass of the gas which has left the cavity). 

The volume of the crack at the moment of time t is determined by the integral 

I 

v (tl = 2n+a;tn-~G-. * (t - -v )  L n+s (t) ; " d~;n (~) [p (~,, t) - -  N - ' ] ,  
g(t) ~ 

1 

where '*n(~)----- y dg.0n(~, ~])~]n-~'(~) ~ ]/'i--~' 
g(O 

at g(t) § O. 

The steady-state solutions of system (1.6)-(1.8) are similarity solutions of the problem 
of gas movement in a main crack (1.1)-(1.4) and can be obtained by the establishment method. 
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3. Results and Discussion. The numerical solution yielded profiles of gas pressure in 
the cracks, crack length, and crack opening in relation to time. 

Figure I, a and b, shows the dependence of the gas pressure and crack profile on the 
coordinate at t = 0.i, 2.5, i0, and 15 (curves 1-4) for the axisymmetric case (n = I) with 
the following parameters: P2(t) = P0, Pz/P0 = 0.01, 6 = r0/L0 = 0.i, N = 4, Wz(~) = i - 
(6 < ~ ! I). It is evident that the profiles of gas pressure and crack opening at t >> t* 
(t*-is the time of the beginning of crack movement) depend only on $. This has to do with 
the fact that the gas-crack system forgets the initial conditions over time and asymptoti- 
cally attains a similarity regime with the variable $ = r/L(t). 

Figure 2 shows the dependence of the length of the propagating crack (n = i) on time. 
Lines 2 and 4 correspond to N = 3 (6 = 0.5; 0.i); lines i and 3 correspond to N = 4 (6 = 
0.5~ o.i). 

The dynamics of the gas-crack system can be tentatively described in three stages: the 
first stage, at t ~(0, t*), is characterized by motion of the gas in a stationary deforming 
crack. The second stage (t > t*) involves crack growth under the influence of the gas moving 
in the crack. The third stage (t >> t*) corresponds to attainment of the similarity asymptote 
by the gas-crack system. Calculations showed that, as a function of time, crack length is 
approximated by the formula (t >> t*): 

L(t) ,,, L~) exp {~(t --~)}. (3. i )  

Equation (3.1) follows from the similarity formulation of the problem (s = 0, r0 = 0). 

Table i shows parameters of similarity asymptotes for different values of N and n, 
where $, is the coordinate of the gas front. With self-similar movement (R(t) = exp {St}, 
the variable is determined by the expression $ = r/exp {St}. Here, the profiles of gas 
pressure and crack opening are shown in Fig. 3, a and b (n = 17, i0, 5, 2, and 1.5, curves 
1-5) for the plane case and in Fig. 4, a and b (N = 17, I0, 3, and 1.5, curves 1-4) for the 
axisymmetric case. 

It should be noted that the ratio of the gas pressure to the rock pressure is the 
determining parameter in the similarity problems (n = O, n = i). At i ! N ~ 1.5, the pro- 
files of gas pressure and crack opening, as functions of the coordinates and time, are close 
to the results obtained in the solution of the hydraulic fracture problems in [i, 2, 4]. 
The compressibility of the gas begins to affect motion as N increases, which leads to a sharp 
drop in pressure near the coordinate origin. 

Let us examine the propagation of a crack from a gas-filled cavity. The quasistatic 
solution of the problem of gas movement out of an underground cavity through a growing crack 
is applicable in the case when gas pressure in the cavity is greater than the !ithostatic 
rock pressure at the end of the dynamic stage of the explosion. The excess pressure causes 
the gas to penetrate the main crack and create conditions for its deformation and growth. 

As the boundary condition, we will use the condition of flow of gas from the cavity 

Here, M C = 4/3~r~p is the mass of the gas in the cavity; r0 is the radius of the cavity; 
S = 2~r0w is the surface of gas flow from the underground cavity. 
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TABLE i 

%, 1 w(o) ~ I ~, [ w(o) 

t,5 [ 0,17 

2,0 I 0,28 

3,0 I ~ 0'72' 

4,0 t t,30 

6,0 t 3,20 

t0,0 ] 10,0 

17,0 I "31,0 

n=O 

0,94 

0,86 

0,68 

0,55 

0,40 

0,26 

0,t6 

1,00 

1,00 

1,00 

1,00 

t,01 

t ,02 

1,04 

0,015 ,1 0,99 

0,034 I 0,98 

0,054 I 0,93 

0,092 I 0,87 

0,140 [ ' 0,78. 

0,230 t 0,69 

0,4i0 ] 0,58 

n=i 

I 

i 

I 

I 

I 

t 

I 

With dimensionless variables from (1.5), Eq. (3.2) takes the form 

a a 
Ot p Xn (t) W ~ (t, ~ g (0~ _ = ~)p~p, = 

where ~=6(l-v)/L-~ ~/;N}~) is the discharge coefficient 

Figures 5, a and b, shows the dependence of the gas pressure and crack-opening profile 
on the coordinate ~ at t = 9.5, 50, and 200 (curves 1-3) (N = 2, n = i, Pz/P0 = 0.01, 6 = 
r0/L 0 = 0.i, < = 0.I). In this case, the gas-crack system does not have a similarity 
asymptote. 

Let us examine the effect of the parameters N, <, and 6 on the movement of gas from an 
underground cavity through a crack and let us determine their characteristic values. The 
study [Ii] examined the gas pressure at the end of the dynamic stage of expansion of the 
cavity: 
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N = Po /P~  = k ,  

where k is a coefficient dependent on the properties of the medium and ranging from 1.3 to 
2.3 (for example, k ffi 2.1 for granite) [ii]. 

Figure 6 shows the effect of the parameters < and 6 on the opening of the crack over 
time. Curves I and 3 correspond to K = 0.i (6 = 0.5; 0.I), and curves 2 and 4 correspond 
to < = 0.2 (6 = 0.5; 0.i). Crack growth is determined by the ratio of p to py. 

The ratio of the radius of the cavity to the initial length of the main crack depends 
on the properties of the medium in which the cavity is formed [12]: 

I 
I 2-A 

(C+,iJ ~ G-f ' V ~ %  q 
where A is the dilatation rate (for an incompressible medium, A = 0, q = 2); ~, is the 
strength in compression; ae is the tensile strength; E is the Young's modulus, 

At low values of 6, gas pressure in the cavity may be reduced so much that crack growth 
does not begin. Crack growth is significantly affected by the ratio of the maximum opening 
of a limit-equilibrium crack to the length of the crack (W($ = g(t), t)m i): 

~-~~ " 3 ~-~- 2 ( l f v )  Pv ln(2 g ;  N/~), 
L o - -  6~ = " a 

At large values of w0/L 0 (which is possible for rock with low shear moduli at high p.), 
outflow may reduce gas pressure in the cavity to values at which crack growth will not ta~e 
place. Calculations showed that there is no crack growth at K > 0.2, 6 < 0.i but that crack 
growth does occur at K < 0.2 or ~ > 0.i. Over time, the crack ~lows unt~l it stops 
completely. 

We thank V. M. Entova for his remarks, which helped to improve the investigation. 
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STEADY-STATE HARMONIC ANTIPLANE VIBRATIONS OF A 

TWO-LAYER ELASTIC HALF-SPACE WITH A CYLINDRICAL CAVITY 

S. O. Vorob'eva, A. A. Lyapin, 
and M. G. Seleznev UDC 539.3 

!. Formulation of a Boundary-Value Problem on Antiplane Steady Harmonic Vibrations. 
Let an elastic medium in a rectangular Cartesian coordinate system (x, y, z) occupy the 
region x ~ -b, r = J(x - h) 2 + y2 ~ a. A layer of thickness b(-b < x < 0) with the para- 
meters p, ~ (9 is density and ~ is the shear modulus) is rigidly c~nne~ted with the half- 
space x ~ 0. The half-space is characterized by the parameters 91 and ~i and as a whole 
contains a horizontal cylindrical cavity of radius a with its center at the point [h, 0). 

Distributed shearing forces are assigned on the boundary of the region, these forces 
undergoing steady harmonic oscillations over time with the frequency ~: 

z = - -  b: ~ =  = Z (y) e - ~ t ,  r = a: ~ )  = 7  (~)  e ' ~ t .  ( 1 .  i )  

Forces of rigid adhesion are assigned on the interface between the layer and half- 
space (x = 0), these forces determining the equality of the displacements (w(x, y)) and the 
shearing stresses ~xz: 

w(x~ ~)lx~'o = w (n (z, Y)]x~+o, ( 1 . 2 )  

Here and below, the superscript (i) denotes characteristics of the half-space. The 
motion of the medium is described by the dynamical equations of the theory of elasticity 
in displacements - the Lame equations [I]. We will seek to solve the formulated boundary- 
value problem in the class of integrable functions~ 

We designate the contact stresses on the interface as follows 

x = 0: ~= (0,.y,: t) = R (y) o -~t = @) (o, y~ t). (1.3) 

In this case, we will use the method of Fourier transformation to solve the boundary-value 
problem for an elastic layer -b ! x ! 0 with boundary conditions (I.i), (1.3). Here, the 
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